
CS 223 Final Project

CuckooRings: A Data Structure for Reducing

Maximum Load in Consistent Hashing

Jonah Kallenbach and Ankit Gupta

May 2015

1 Introduction

Cuckoo hashing and consistent hashing are different hashing schemes for differ-
ent use cases, both of which have been implemented in numerous recent systems
[1, 2, 3, 4, 5]. Cuckoo hashing, originally developed by Rasmus Pagh and Flem-
ming Friche Rodler in 2001 [6], is a hashing scheme which provides O(1) worst
case look-up time and O(1) expected amortized insertion time, by allowing keys
to be stored in multiple locations, so if one slot is full, the other can be filled
with that key. If the second slot is full, we evict the key in that slot, and repeat
the process, usually up to some predefined limit, where if we exceed that limit,
we rehash everything. In the setting of a distributed system, this step, the ex-
pansion of the hash table (or picking of new hash functions) and rehashing of
all keys, is often utterly impractical. For these settings, hashing structures have
been invented that allow only small amounts of rehashing when the structure
of the buckets changes. Here we consider the idea of consistent hashing that
was introduced by Karger et al. in 1997 [7]. In consistent hashing, we define
some key-space K in which the servers or buckets (we will use the two terms
interchangeably here) will live. To find the server associated with a particular
key, we hash the key into the ring, and walk clockwise or counter-clockwise (an
implementation could pick either direction as long as it is that way everywhere)
along the ring until the first bucket index we reach. This has the key benefit
that if a particular server fails or a new server is added, we rehash roughly 1/N
of the keys, where N is the number of servers, instead of all of them.

In this project, we sought to implement a new data structure, which is an
application of some of the ideas from the field of cuckoo hashing to consistent
hashing. Most crucially, we maintain two consistent hashing rings, and if a
particular server has a load above some predefined threshold, we rehash its load
into the other ring. This provides an interesting trade-off, one which usually
resolves in favor of our data structure: if this threshold load is made too low,
one can set off a series of rehashes back and forth (we simply stop after some
predefined number of cycles), which significantly slows down insertion, but if it

1



is too high, we are not really helping relieve the max load on the servers at all.
In the ideal case, with minimal slowdown, we dramatically improve the load
distribution over the servers.

2 Terminology

• Server: To be used interchangeably with bucket. A major use-case of
the proposed data structure will be for allocation of jobs to servers in
systems applications. However, in the general case, this data structure
can be applied to wider problems, and so servers should be thought of as
buckets.

• Job: A job should be thought of as a key that is going to be hashed.
Thus, jobs get put into servers (as keys get hashed to buckets).

• N: number of servers or buckets

• M: number of keys or jobs being hashed.

• Load: The load of the ith bucket is the number of keys hashed to the ith
bucket.

• RingHash: Our implementation of consistent hashing.

3 Consistent Hashing

3.1 Theory

Consistent hashing is a formulation of hashing that allows for the removal or
addition of buckets with only small amounts of rehashing and no need to change
the hash function. Consider a ring, with points along the ring representing the
integers from 0 to 232 (where 0 and 232 are both at the top of the circle). Buckets
are located at (ideally evenly spread) points along the circle. When hashing a
key, you hash it to number between 0 and 232, which corresponds to some point
on the circle. Then, you follow the circle around until you reach the next bucket.

The next section will delve more deeply into the systems applications of this
simple yet powerful algorithm. However, there are a number of key theoretical
results:

Theorem 1. For any set of N nodes and K keys, with high probability:

1. Each node is responsible for O((1 + ε)KN ) keys.

2. When the (N + 1)st server joins or leaves the network, responsibilities for
O(K/N) keys change to or from the joining or leaving node.

2



Note: ε was originally shown to be O(logN), but can be reduced by using
more complex schemes. This is the critical benefit of consistent hashing: the
removal of buckets leads to only a small fraction of the total number of keys
needing to be rehashed, and they can be rehashed very easily (just to the next
point on the circle). Similarly, it is easy to add buckets to the structure. This
makes it effective for the allocation of jobs to servers, as it allows for changing
numbers of servers (as they go online and offline), with only a limited amount
of necessary rehashing when this happens.

One downside of consistent hashing, however, is that it is susceptible to
an uneven distribution of keys over the buckets. While a good hash function
will help to alleviate this, we can still get buckets that have many more keys
than others, in part because of the rehashing of keys that occurs when a bucket
(server) is removed.

Our data structure will incorporate aspects of another hashing strategy,
developed around the same time as consistent hashing but for very different
purposes, called cuckoo hashing, in order to address some of these problems. The
results section contains various metrics about our implementation of consistent
hashing (RingHash), compared to our proposed data structure.

3.2 Our implementation

As a precursor to implementing our proposed data structure, we began by im-
plementing the Consistent Hashing data structure, called RingHash. In the
later sections of this paper, we discuss the performance of this implementation
relative to our proposed data structure.

We implemented RingHash in C++, using a variety of optimizations. For
one, we used a std::map to implement the ring structure described above, and
performed the clockwise movement described above by using the lower bound()

method of the C++ std::map. This was an effective way to implement consistent
hashing, since the std::map is implemented as a red-black tree, which allows
for logarithmic (in the number of servers) insertions, lookup, and removal of key
values.

Also, we investigated a number of hash functions for this project, and ini-
tially had poor results due to hash functions that were not effectively mapping
numbers across the key space. While this is going to be an issue in general
(making good hash functions is a field in itself), we found several functions that
had been rigorously tested and been open-sourced, and those are included in
our implementation – note that none of them are cryptographic hash functions
for speed reasons, but they all have relatively nice distributive properties.

4 Applications of Consistent Hashing

Unsurprisingly, consistent hashing has been used in myriad distributed caching
systems on the internet – conventional hashing is simply impractical given the

3



likelihood of server crashes or adding new servers in a distributed online setting
[5, 8, 4].

Perhaps the canonical usage of consistent hashing today is the enormously
popular peer-to-peer lookup service Chord, developed by Stoica et al. at MIT in
2001. The Chord protocol attempts to solve the problem of finding the node in
a large network which stores a particular data item, and supports only a single
operation: given a key, what node does that key belong to? This operation, in
most implementations of Chord, takes a 160-bit key and returns the IP address
of the node responsible for that key. The system differs from typical consistent
hashing in that given an N node Chord system, each node maintains information
about only O(logN) other nodes, and any lookups will take O(logN) messages
to other nodes, instead of the centralized information which is the norm for
consistent hashing systems but would not work in a peer-to-peer system. The
overarching logic is nonetheless the same. Each node k maintains a so called
‘finger table’ with 160 entries. The ith entry in this table at node k contains the
identity of the first node that succeeds n by at least 2i−1 on the ring hash, that
is, k′ = successor(n+ 2i−1), where i is in [1, 160], and all computations are mod
2160. So, for example, the first finger of k is its successor on the circle. In figure
1 we see an example state of the Chord ring. When a node n doesn’t know the
successor of a key q, and the successor of that key is not given directly by the
node’s finger table, it issues a request to an intermediate node closer to q to find
q’s successor. Let’s say we are node 3, and want to find the successor of identifier
1. We see that 1 is on the ring interval [7,3), so we check the third entry in the
finger table of 3, and see 0, so we go to node 0, which checks its finger table and
sees that the successor of key 1 is node 1, and return this information to node
3. We see that in general, each hop will at least halve the remaining keyspace,
which is where the O(logN) bound on lookup time comes from.

Figure 1: Chord Finger Tables
An example of a state the chord identifier ring could be in and how a lookup
would work, taken directly from [4].

4



We see that, despite the local instead of global capturing of information
about the ring, the chord protocol functions very similarly to a standard con-
sistent hashing protocol, and our new data structure could certainly be applied
to this setting.

In addition to heavy usage in internet protocols like Chord and like the
routing servers at Akamai, consistent hashing is finding increasing popularity
in the world of databases. For example, Amazon’s massive, mission-critical
Dynamo database uses consistent hashing to distribute load across its nodes.
Another well-known recent example is the usage of consistent hashing in the
FAWN (Fast Array of Wimpy Nodes) key value data store [3]. This system is a
cluster architecture designed to serve massive loads while consuming very little
power, through a combination of per-node flash storage (given the odd properties
of flash writes, FAWN uses a log-structured datastore per node), balanced load
distribution via a consistent hashing ring, and embedded CPUs. The authors
report that their usage of consistent hashing, which they acknowledge to be
similar to Chord, enabled FAWN to achieve fast failover and node insertion
rates: critical properties for a massive key-value store like FAWN.

5 Cuckoo Hashing

Cuckoo Hashing was first developed by Rasmus Pagh and Flemming Friche
Rodler [9]. The basic setup involves having two independent hash functions and
two hash tables (one hash table per function). An element is hashed to one of
the hash tables, and if that location is already occupied, the element there is
rehashed into the other table, if that one is available. This is called a ”cuckoo”
and is done repeatedly until an element is successfully inserted into the table.
Furthermore, it is possible that the sequence of insertions forms a cycle (where
a particular key is hashed to the same location twice), in which case two new
hash functions would need to be picked (or the number of buckets changed),
and all of the keys would need to be rehashed.

Critically, Pagh and Rodler show that Cuckoo Hashing has amortized O(1)
insertion of elements, and O(1) lookup and removal. We can attain this by
viewing the structure of the cuckoo hash tables as a bipartite graph, as done in
[10], where each of the bins are nodes in the graph, and an edge connects the
two sides of the graph if there is a key that hashes to each of the vertices of that
edge. Then, the cuckoo hash insertion can loop infinitely if there is a connected
component with more than 1 cycle. This relies on the following theorem:

Theorem 2. Inserting a key into a connected component with at most 1 cycle
will not cause an infinite loop.

This is proven in [10]. A simple way to consider the situation is that an
infinite loop happens when a key tries to enter a particular bucket more than
once. However, this can only happen if there are at least two cycles in the
connected component, since that key has to be kicked out of both its initial
spot and the other spot to attempt to join the original one again.

5



For the purposes of this explanation, we will be dealing primarily with the
case where there is no such cycle, as our proposed data structure does not have
rehashing (instead, it tolerates exceeding the maximum load of each bucket if
enough rehashes have been tried).

If there is no cycle in any connected component, the expected time an inser-
tion will take is proportional to the expected size of a connected component in
the graph (since the number of edges in the connected component corresponds
to how many times keys will need to be cuckooed before the process rests).

To analyze this, [10] shows that the bipartite graph has the following prop-
erty

Theorem 3. The expected size of a connected component in the bipartite graph
is O(1 + 1

ε ).

This is an improvement over using just a single hash table, as it allows
for hash collisions without needing chaining or linear probing (which both in-
crease the lookup time). The proof for this theorem is given in [10]. As a
brief overview, the proof relies on reducing the issue of connected components
in a bipartite graph to a problem about subcritical Galton-Watson processes,
on which bounds can be applied to show that the expected size of a connected
component is O(1 + 1

ε ).

6 CuckooRings: A Synthesis of Cuckoo and Con-
sistent Hashing

6.1 Overview

In this section, we will describe our proposed data structure. This structure will
combine aspects of Consistent Hashing and Cuckoo Hashing in a fast system for
data allocation and load balancing problems.

As a summary, with N servers, our data structure will allow for O(logN)
key insertions, server insertions, and server removals: these run time figures
come from the fact that we use a red black tree to represent the sorted locations
of the servers along the ring (using C++’s std::map implementation).

Each CuckooRings object contains two RingHash structures - which are an
implementation of the aforementioned consistent hashing ring. In order to insert
an item into the CuckooRings, we insert it into the RingHash that has fewer
keys hashed to it. The RingHashs have a threshold number of keys per bucket.
If the load on the RingHash bucket we insert into exceeds this number, we
rehash the entire contents of that bucket into the other RingHash (see Figure
2), and then continue to do this recursively until either all of the buckets are
within the threshold, or we pass some maximum recursion depth. If we exceed
the maximum number of rehashes, we stop moving elements back and forth,
which may allow the number of keys to exceed the threshold on some servers.

6



To look up an item in the CuckooRings, we determine which bucket of each
of the RingHashs it is hashed to, as in Cuckoo Hashing, and do a linear search
on those buckets to find the item (these keys were supposed to represent server
jobs in which order doesn’t matter and jobs will probably disappear with decent
frequency anyway, but if we really wanted to make this as fast as possible we
could keep a sorted data structure instead of a vector).

If a server is removed or added, we only have to rehash the part of the key-
space affected by that one server, which is the same as our result for standard
consistent hashing.

Figure 2: This shows one step of an insertion process where the threshold on a
server is a 4. The rectangles are CuckooRings, and the circles inside them are
RingHash structures. The points on the circles refer to servers, and the numbers
are loads. The red servers have exceeded their threshold. In the next step of
this process, we would rehash the keys in the server with too many keys in the
right RingHash back into the left RingHash.

Why would we expect this to work well? In several ways it emulates the
reasons that Cuckoo Hashing is effective. Namely, if several keys are hashing
to the same bucket repeatedly, it allows us to rehash those keys using a second
hash function, which may potentially perform better than the first one for that
set of keys. Moreover, this makes the spread of keys across the buckets more
uniform. If we set a small threshold on the number of keys per bucket (say
ε(M/N), for ε = 2, say, then we expect that most of buckets will be within that
threshold (based on experimental, not theoretical analysis).

6.2 Code

All of our code is available on Github:
https://github.com/jonahkall/CuckooConsistent

7

https://github.com/jonahkall/CuckooConsistent


7 Results: CuckooRings vs. Consistent Hashing

7.1 Criteria for Analysis

• Time: This is simply how much time it took the test to run in the Cuck-
ooRings versus in the standard RingHash. We aimed for a small or zero
reduction in speed from the Ringhash.

• Maximum Load: This is defined as the maximum number of keys that
any server has. This is important from a job-allocation standpoint because
it can be used as a measure of the maximum latency that a client would
experience.

• Cost: This is defined as 1
n

∑
iX

2
i , where Xi is the load of the ith server.

This cost function penalizes heavy load concentration on a small number of
servers, and can serve a measure of the general effectiveness of a hashing
scheme. This approach is also suggested by [11] as a good measure of
clustering.

7.2 Testing Standards

We evaluated the performance of our data structure through a series of tests,
using the above criteria to distinguish between the CuckooRings and RingHash
data structures. These are the tests that we constructed:

• InsertKeys Test: This test simply made an increasing number of inser-
tions to a data structure of a fixed size, and recorded the above criteria
for the two data structures.

• RemoveServer Test: This test began by inserting a constant number
of elements into the data structures, and then removing an increasing
number of elements in each sample. This allowed us to see how metrics
like max load and cost would scale in conditions when there is widespread
server failure (we tested up to the case were 10% of the total servers failed.

• RandomActions Test: This test was meant to mimic the time evolution
of a real live distrbiuted system. Rather than simply adding or removing
keys, we insert an increasing number of keys as well as randomly removing
or adding servers. Furthermore, in this situation, we increased the size of
the data structures (number of servers initially in the server) proportion-
ally with the number of insertions we were making. This basically allows
us to keep the ratio of initial keys to initial servers constant, and thus
lets us see how the different metrics scale at different sizes. Having differ-
ent server thresholds should particularly affect this test, since the ratio of
number of keys to number of servers is roughly constant in these tests. In
this case, (M/N) ≈ 1.

• Different Server Thresholds: We changed the server thresholds be-
tween 2, 5, and 10. These thresholds correspond to the maximum load in

8



a server before the server begins cuckooing. Doing the tests at different
server thresholds allowed us to see how the various metrics differed across
different thresholds, which affect the amount of cuckooing that occurs
during insertions.

7.3 Charts and Analysis

For this section, we tested the criteria above with different bucket capacity
thresholds. Altering these thresholds effectively manages a trade-off between the
expected amount of time that an insertion takes (which should be less for higher
capacities, since there would be less cuckooing happening), with decreased ben-
efits from the hash table structure, since there would be higher loads. In figure
3 we present the results from the tests with a threshold of 2, in figure 4 with a
threshold of 5, and in figure 5 with a threshold of 10.

(a) InsertKeys Time (b) InsertKeys Cost InsertKeys Max Load

(a) RemoveServer Time (b) RemoveServer Cost RemoveServer Max Load

(a) RandomActions Time (b) RandomActions Cost RandomActions Max Load

Figure 3: Test Results for Threshold = 2
This is the test case that we would expect to see the biggest benefits in terms
of cost and max load, but the biggest drawbacks in terms of times. We would
especially expect to see this in the RandomActions tests, since those involve
many different kinds of actions. This hypothesis seems consistent with the
data.

9



(a) InsertKeys Time (b) InsertKeys Cost InsertKeys Max Load

(a) RemoveServer Time (b) RemoveServer Cost RemoveServer Max Load

(a) RandomActions Time (b) RandomActions Cost RandomActions Max Load

Figure 4: Test Results for Threshold = 5
In this case, we see less of a trade-off in terms of time, but also less benefits in
terms of cost and max load reductions than the lower threshold.

There are several major takeaways from the data that we collected. For
one, we found that across all metrics, the marginal time that it takes to use a
CuckooRings structure is small or nonexistent: we often achieved very similar
and occasionally even better runtimes. These cases are likely a result of re-
duced loads causing linear key lookups to take less time on average. The more
interesting stories are in the max loads and the overall costs.

We see that there is a substantial reduction in the maximum load of the
structure in most cases, particularly in the realistic RandomActions test. For
the applications that we are dealing with, a potential reduction in latency by a
factor of 2 (as we were seeing in terms of max loads), would lead to substantial
benefits.

Also, we see that there are benefits in terms of the overall cost of the struc-
ture. This metric is important, as the maximum load metric only specifies what
the improvement in the worst server is, while this metric assesses the general
success of the dsitribution (while penalizing the especially high loads). We see
that the costs associated with a CuckooRings structure are also substantially
lower (and consistently so) than that of the RingHash structure.

It is interesting to see that the RandomActions test is what differentiates

10



(a) InsertKeys Time (b) InsertKeys Cost InsertKeys Max Load

(a) RemoveServer Time (b) RemoveServer Cost RemoveServer Max Load

(a) RandomActions Time (b) RandomActions Cost RandomActions Max Load

Figure 5: Test Results for Threshold = 10
With this relatively high threshold, we see very little difference in performance
between the two data structures.

the two data structures the most, across all of the criteria. This is promis-
ing, as the random actions test is perhaps the most realistic representation of
the distributed environment in which a CuckooRings structure would likely be
deployed.

8 Some Open Theoretical Questions

We have achieved definite experimental benefits in load balancing using this
new data structure, but what theoretical justification can we provide for these
benefits? Unfortunately, analyzing this data structure’s expected run time and
max load is very difficult because of the complexity of its cuckoo graph. As
above, we can construct a cuckoo graph. However, in our data structure, there
is no longer a single element per bucket, meaning that the graph multiplies
significantly in complexity: every key in a bucket needs to be connected to its
corresponding buckets in the other ring. As in the standard cuckoo hashing
analysis, we see that insertions only cause a problem if more than one cycle is
generated in the cuckoo graph. At this point however, the analysis seems to

11



break down, because we no longer have the theorem that bounds the sizes of
the connected components, as the proof assumes things which are no longer true
in our situation (namely the cycles back and forth can contain multiple edges).
We pose the following questions:
Question 1: Bound the key insertion time into a CuckooRings structure.
Question 2: Bound the insertion time of a server into a CuckooRings struc-
ture (this could probably be at least trivially bounded because there are O(K/N)
expected rehashes, so this bound could be at least loosely derived with a union
bound)
Question 3: Bound the expected max load given a number of keys, number of
servers, and a cutoff.

Our experimental results clearly demonstrated there is a trade-off between
time, the cutoff, and the max load. Namely, reducing the cutoff leads to signif-
icantly lower max loads, but, because rehashes are going back and forth more
frequently, also takes more time. We are curious about the best way to make
this trade-off subject to some set of constraints.
Question 4: Provide a theoretical analysis demonstrating how to optimize the
cutoff given the desired trade-off between time and max load. For example, this
could be specified in the form of a cost function.

9 Future Work

There are substantial opportunities for future work in this area. For one, we
have not substantially explored what happens when one adds replication of the
servers into the structures. Replication works by having several virtual servers
on the circle corresponding to real servers. Keys are hashed to virtual servers,
which get sent through an intermediate mapping to the actual server which can
handle the request. In particular, this approach should somewhat decrease the
maximum load on the servers, but this does add costs in terms of insertion time.
So, it would be interesting to see what benefits the proposed data structure has
over this approach, if any, and whether the proposed structure can be further
optimized using replication.

As mentioned above, this data structure is difficult to analyze theoretically,
and so any kind of comprehensive analysis of its expected behavior would be
interesting. There are a number of other areas we can explore. For one, we
have developed a fairly free-form API that allows us to experiment with dif-
ferent configurations of the data structure, and have made it easy to change
this configuration dynamically. We have explored to some degree what real
world workloads look like, based on literature review and conversations with
researchers in the field, but it would be interesting to try to run our system on
an actual, real-live workload (perhaps one recorded from a real world system
like Dynamo). Given our system’s load balancing properties, it would also be
interesting to explore whether our system could alleviate some of the known
problems with the Chord distributed protocol, many of which stem from con-
centrated load at certain points in the ring.

12



Finally, it would be interesting to see if using more than 2 rings could produce
even better results, and more generally, what the number of rings vs. cutoff vs.
number of keys vs. number of servers trade-off space looks like.

References

[1] Tran Ngoc Thinh, Surin Kittitornkun, and Shigenori Tomiyama. Applying
cuckoo hashing for fpga-based pattern matching in nids/nips. In Field-
Programmable Technology, 2007. ICFPT 2007. International Conference
on, pages 121–128. IEEE, 2007.

[2] Marcin Zukowski, Sándor Héman, and Peter Boncz. Architecture-conscious
hashing. In Proceedings of the 2nd international workshop on Data man-
agement on new hardware, page 6. ACM, 2006.

[3] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 1–14. ACM, 2009.

[4] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. ACM SIGCOMM Computer Communication Review, 31(4):149–
160, 2001.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In ACM SIGOPS Operating Systems Review,
volume 41, pages 205–220. ACM, 2007.

[6] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Springer,
2001.

[7] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 654–663. ACM, 1997.

[8] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[9] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Springer,
2001.

13



[10] Lecture notes on cuckoo hashing, stanford university. May 2014.
http://web.stanford.edu/class/archive/cs/cs166/cs166.1146/

lectures/13/Slides13.pdf.

[11] Lecture notes on hash functions, cornell university. 2014. http://www.cs.
cornell.edu/courses/cs312/2008sp/lectures/lec21.html.

14

http://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Slides13.pdf
http://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Slides13.pdf
http://www.cs.cornell.edu/courses/cs312/2008sp/lectures/lec21.html
http://www.cs.cornell.edu/courses/cs312/2008sp/lectures/lec21.html

	Introduction
	Terminology
	Consistent Hashing
	Theory
	Our implementation

	Applications of Consistent Hashing
	Cuckoo Hashing
	CuckooRings: A Synthesis of Cuckoo and Consistent Hashing
	Overview
	Code

	Results: CuckooRings vs. Consistent Hashing
	Criteria for Analysis
	Testing Standards
	Charts and Analysis

	Some Open Theoretical Questions
	Future Work

