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Summary

I Use dilated convolutional neural network to model
long-term dependencies in DNA

I Appoximately match LSTM performance on
small-context baseline for predicting regulatory
markers

I Using new long-term dependency dataset, achieve
best performance using dilated convolutions for
predicting regulatory markers

Genetic Regulation Overview

Key Attributes:
I DNA has a complex three-dimensional conformation that

is not captured by its 1D sequence
I Distal elements in 1D space can be adjacent in 3D space,

and thus able to interact
I Capturing long-term dependencies (in 1D space) may

allow network to learn motifs from spatially close regions

Figure: From Wang et al. (2012). A gene regulatory network. A
transcription factor that binds at the location “nucleosome-free enhancer
region” is spatially close to the transcription start site.

High-level overview of task: Given DNA region, predict
whether each regulatory marker is present in region.
I Transcription Factor Binding Sites (TFBSs): TFs are

proteins that bind to DNA, and either promote or repress
gene transcription.

I Histone Modifications: Histones are proteins that DNA is
wound around. Chemical modifications to histones can
change how tightly wound DNA is, thus making regions
more or less accessible.

I DNAse hypersensitivity sites: These regions correspond
with more accessible regions of the genome, where we
expect regulatory activity to occur.

Figure: An overview of the inputs and outputs we use for Task 2. The
input is a DNA sequence of length 25000. The output is a set of tuples,
representing where in the input each regulatory factor is present.
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Model Comparison

Bidirectional LSTM
I Receptive field (in bold) of each output contains every

input
I Backpropagation distance is proportional to sequence

length
I Overview: Large receptive field, but long backprop

distance
Standard Convolution

I Small receptive field (in bold) for every output:
O(nlayers)

I Backpropagation distance is short
I Overview: Short backprop distance, but very small

receptive field

Dilated Convolution
I Introduced for image segmentation by Yu and Koltun

(2015)
I Large receptive field (in bold) for every output:

O(2nlayers)
I Overview: Short backprop distance and very large

receptive field
Main Takeaway: Dilated convolutions allow for large receptive fields like LSTMs, and short backpropagations, like
convolutions. This makes them promising for modeling problems with very long-term dependencies.

Task 1: Short Inputs, Existing Data

Use the dataset from Zhou and Troyanskaya (2015). Given a short sequence of d DNA nucleotides, predict whether each
of m regulatory factors is present anywhere in that sequence.
I V = {A, C, T, G}, d = 1000, m = 919
I x = Vd, y = {0, 1}m

I Task: maximize p(y|x).
I Goal: Match SOTA LSTM performance using Dilated

Convolutions
Model Hidden Type Parameters
Baseline: LR 0 - 3,676,919
Baseline: MLP 1 Fully 4,551,919
Baseline: CNN3 3 Conv 155,159,839
Baseline: LSTM 2 LSTM 46,926,479
Dilated3 3 Dilated 37,056,519
Dilated6 6 Dilated 25,758,079

CNN3 is the baseline from Zhou and Troyanskaya (2015), and LSTM is the baseline
from Quang and Xie (2016). Parameter counts are from the best-case hyperparameter
configuration.

Results

Model PR AUC
TFBS Hist DNAse

Baseline: LR 0.042 0.143 0.097
Baseline: FF 0.046 0.181 0.106
Baseline: CNN3 0.205 0.273 0.319
Baseline: LSTM 0.305 0.340 0.407
Dilated3 0.190 0.271 0.299
Dilated6 0.285 0.320 0.396

I Dilated convolutions allow for significant improvements
over simple convolutional models

I Dilated6 performs better than standard convolutions on
all three metrics, and only slightly underperforms the
LSTM-based model

Task 2: Long Inputs, New Dataset

Construct new dataset with inputs with larger contexts.
Dataset properties:
I Longer input sequences: d = 25000
I Total of 93880 non-overlapping sequences
I Comprises 2.3 billion nucleotides
I Excludes sequences with large percentage of unknown

nucleotides or multimapped regions
I Constructed from ENCODE genome regulatory data

(Consortium et al., 2012)
With large context, each output is likely to be present in very
large number of inputs. Thus, predict whether each output is
at each location in the input.
I d = 25000, m = 919
I x = Vd, y = {0, 1}d×m

I Task: maximize p(y|x).
I Goal: Demonstrate that with longer inputs, dilated

convolutions are better able to predict the locations of
regulatory markers than LSTMs.

Loss: Multilabel Binary Cross Entropy Loss: if xi is the
prediction for the ith label, and zi is the true value:

1
m

∑ (−zi log(xi)− (1− zi) log(1− xi))

Model Descriptions and Results

Model Layers Conv Type Parameters
CNN1 1 Conv 137,187
CNN3 3 Conv 341,803
CNN7 7 Conv 656,363
Dilated 6 Dilated Conv 635,739
Bi-LSTM 4 Conv, LSTM 764,395
ID-CNN 15 Iterated Dilated 631,263

Model Validation PR AUC Test PR AUC
TFBS Hist DNAse TFBS Hist DNAse

CNN3 0.013 0.053 0.035 - - -
CNN3 0.059 0.115 0.100 - - -
CNN7 0.167 0.166 0.180 0.167 0.165 0.186
Dilated 0.274 0.279 0.178 0.274 0.273 0.179
Bi-LSTM 0.104 0.288 0.116 0.107 0.264 0.113
ID-CNN 0.166 0.247 0.147 - - -
I Substantially higher performance using dilated

convolutions on predicting transcription factor binding
sites and histone modifications

I No improvement using dilated convolutions on predicting
DNAse hypersensitivity sites

Conclusions
I With small input context (Task 1), dilated convolutions do better than standard convolutions, but not LSTMs.
I With larger input contexts (Task 2), dilated convolutions do much better than standard convolutions and LSTMs
I LSTMs appear less capable of scaling to long backpropagations.
I Suggests that dilated convolutions may be an important model for studying complex genetic phenomena
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